Comparison of the Calibration Algorithms and SI Traceability of MODIS, VIIRS, GOES, and GOES-R ABI Sensors

نویسندگان

  • Raju Datla
  • Xi Shao
  • Changyong Cao
  • Xiangqian Wu
چکیده

The radiometric calibration equations for the thermal emissive bands (TEB) and the reflective solar bands (RSB) measurements of the earth scenes by the polar satellite sensors, (Terra and Aqua) MODIS and Suomi NPP (VIIRS), and geostationary sensors, GOES Imager and the GOES-R Advanced Baseline Imager (ABI) are analyzed towards calibration algorithm harmonization on the basis of SI traceability which is one of the goals of the NOAA National Calibration Center (NCC). One of the overarching goals of NCC is to provide knowledge base on the NOAA operational satellite sensors and recommend best practices for achieving SI traceability for the radiance measurements on-orbit. As such, the calibration methodologies of these satellite optical sensors are reviewed in light of the recommended practice for radiometric calibration at the National Institute of Standards and Technology (NIST). The equivalence of some of the spectral bands in these sensors for their end products is presented. The operational and calibration features of the sensors for on-orbit observation of radiance are also compared in tabular form. This review is also to serve as a quick cross reference to researchers and analysts on how the observed signals from these sensors in space are converted to radiances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Inter-Comparison between AHI, VIIRS and MODIS Clear-Sky Ocean Radiances for Accurate SST Retrievals

Clear-sky brightness temperatures (BT) in five bands of the Advanced Himawari Imager (AHI; flown onboard Himawari-8 satellite) centered at 3.9, 8.6, 10.4, 11.2, and 12.3 μm (denoted by IR37, IR86, IR10, IR11, and IR12, respectively) are used in the NOAA Advanced Clear-Sky Processor for Oceans (ACSPO) sea surface temperature (SST) retrieval system. Here, AHI BTs are preliminarily evaluated for s...

متن کامل

GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the ...

متن کامل

Comparison between current and future environmental satellite imagers on cloud classification using MODIS

Future Satellite Imagers are expected to improve current ones on environmental and meteorological applications. In this study, an automatic classification scheme using radiance measurements with a clustering method is applied in an attempt to compare the capability on cloud classification by different sensors: AVHRR/3, the current GOES-12 Imager, SEVIRI, VIIRS, and ABI. TheMODIS cloud mask is u...

متن کامل

Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands

The Advanced Himawari Imager (AHI) on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR) bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC) methods, both of which are based on incidently collocated homogeneous...

متن کامل

VIIRS and MODIS Multi-Spectral Imagery Assessment for Aviation Weather and Cloud Analysis at High Latitude – Winter 2013-14

Introduction This report describes the 2013/14 assessment of multi-spectral, false color composites produced by the NASA Short-term Prediction Research and Transition (SPoRT) Center, similar to other products developed previously by the Naval Research Laboratory (NRL) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). Products herein are generated from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016